aboutsummaryrefslogtreecommitdiff
path: root/includes/js/dojox/_sql/_crypto.js
blob: e8a921453e3bb239ff0ac74a2ab72dee715e4592 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
if(!dojo._hasResource["dojox._sql._crypto"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
dojo._hasResource["dojox._sql._crypto"] = true;
// Taken from http://www.movable-type.co.uk/scripts/aes.html by
// Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool
// by Brad Neuberg, bkn3@columbia.edu

dojo.provide("dojox._sql._crypto");

dojo.mixin(dojox._sql._crypto,{
	// _POOL_SIZE:
	//	Size of worker pool to create to help with crypto
	_POOL_SIZE: 100,
	
	encrypt: function(plaintext, password, callback){
		// summary:
		//	Use Corrected Block TEA to encrypt plaintext using password
		//	(note plaintext & password must be strings not string objects).
		//	Results will be returned to the 'callback' asychronously.	
		this._initWorkerPool();
	
		var msg ={plaintext: plaintext, password: password};
		msg = dojo.toJson(msg);
		msg = "encr:" + String(msg);
	
		this._assignWork(msg, callback);
	},

	decrypt: function(ciphertext, password, callback){
		// summary:
		//	Use Corrected Block TEA to decrypt ciphertext using password
		//	(note ciphertext & password must be strings not string objects).
		//	Results will be returned to the 'callback' asychronously.
		this._initWorkerPool();
	
		var msg ={ciphertext: ciphertext, password: password};
		msg = dojo.toJson(msg);
		msg = "decr:" + String(msg);
	
		this._assignWork(msg, callback);
	},
	
	_initWorkerPool: function(){
		// bugs in Google Gears prevents us from dynamically creating
		// and destroying workers as we need them -- the worker
		// pool functionality stops working after a number of crypto
		// cycles (probably related to a memory leak in Google Gears).
		// this is too bad, since it results in much simpler code.
	
		// instead, we have to create a pool of workers and reuse them. we
		// keep a stack of 'unemployed' Worker IDs that are currently not working.
		// if a work request comes in, we pop off the 'unemployed' stack
		// and put them to work, storing them in an 'employed' hashtable,
		// keyed by their Worker ID with the value being the callback function
		// that wants the result. when an employed worker is done, we get
		// a message in our 'manager' which adds this worker back to the 
		// unemployed stack and routes the result to the callback that
		// wanted it. if all the workers were employed in the past but
		// more work needed to be done (i.e. it's a tight labor pool ;) 
		// then the work messages are pushed onto
		// a 'handleMessage' queue as an object tuple{msg: msg, callback: callback}
	
		if(!this._manager){
			try{
				this._manager = google.gears.factory.create("beta.workerpool", "1.0");
				this._unemployed = [];
				this._employed ={};
				this._handleMessage = [];
			
				var self = this;
				this._manager.onmessage = function(msg, sender){
					// get the callback necessary to serve this result
					var callback = self._employed["_" + sender];
				
					// make this worker unemployed
					self._employed["_" + sender] = undefined;
					self._unemployed.push("_" + sender);
				
					// see if we need to assign new work
					// that was queued up needing to be done
					if(self._handleMessage.length){
						var handleMe = self._handleMessage.shift();
						self._assignWork(handleMe.msg, handleMe.callback);
					}
				
					// return results
					callback(msg);
				}
				
				var workerInit = "function _workerInit(){"
									+ "gearsWorkerPool.onmessage = "
										+ String(this._workerHandler)
									+ ";"
								+ "}";
			
				var code = workerInit + " _workerInit();";
	
				// create our worker pool
				for(var i = 0; i < this._POOL_SIZE; i++){
					this._unemployed.push("_" + this._manager.createWorker(code));
				}
			}catch(exp){
				throw exp.message||exp;
			}
		}
	},

	_assignWork: function(msg, callback){
		// can we immediately assign this work?
		if(!this._handleMessage.length && this._unemployed.length){
			// get an unemployed worker
			var workerID = this._unemployed.shift().substring(1); // remove _
		
			// list this worker as employed
			this._employed["_" + workerID] = callback;
		
			// do the worke
			this._manager.sendMessage(msg, workerID);
		}else{
			// we have to queue it up
			this._handleMessage ={msg: msg, callback: callback};
		}
	},

	_workerHandler: function(msg, sender){
		
		/* Begin AES Implementation */
		
		/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
		
		// Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1]
		var Sbox =	[0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
					 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
					 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
					 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
					 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
					 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
					 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
					 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
					 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
					 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
					 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
					 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
					 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
					 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
					 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
					 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16];

		// Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
		var Rcon = [ [0x00, 0x00, 0x00, 0x00],
					 [0x01, 0x00, 0x00, 0x00],
					 [0x02, 0x00, 0x00, 0x00],
					 [0x04, 0x00, 0x00, 0x00],
					 [0x08, 0x00, 0x00, 0x00],
					 [0x10, 0x00, 0x00, 0x00],
					 [0x20, 0x00, 0x00, 0x00],
					 [0x40, 0x00, 0x00, 0x00],
					 [0x80, 0x00, 0x00, 0x00],
					 [0x1b, 0x00, 0x00, 0x00],
					 [0x36, 0x00, 0x00, 0x00] ]; 

		/*
		 * AES Cipher function: encrypt 'input' with Rijndael algorithm
		 *
		 *	 takes	 byte-array 'input' (16 bytes)
		 *			 2D byte-array key schedule 'w' (Nr+1 x Nb bytes)
		 *
		 *	 applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage
		 *
		 *	 returns byte-array encrypted value (16 bytes)
		 */
		function Cipher(input, w) {	   // main Cipher function [§5.1]
		  var Nb = 4;				// block size (in words): no of columns in state (fixed at 4 for AES)
		  var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys

		  var state = [[],[],[],[]];  // initialise 4xNb byte-array 'state' with input [§3.4]
		  for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i];

		  state = AddRoundKey(state, w, 0, Nb);

		  for (var round=1; round<Nr; round++) {
			state = SubBytes(state, Nb);
			state = ShiftRows(state, Nb);
			state = MixColumns(state, Nb);
			state = AddRoundKey(state, w, round, Nb);
		  }

		  state = SubBytes(state, Nb);
		  state = ShiftRows(state, Nb);
		  state = AddRoundKey(state, w, Nr, Nb);

		  var output = new Array(4*Nb);	 // convert state to 1-d array before returning [§3.4]
		  for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)];
		  return output;
		}


		function SubBytes(s, Nb) {	  // apply SBox to state S [§5.1.1]
		  for (var r=0; r<4; r++) {
			for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]];
		  }
		  return s;
		}


		function ShiftRows(s, Nb) {	   // shift row r of state S left by r bytes [§5.1.2]
		  var t = new Array(4);
		  for (var r=1; r<4; r++) {
			for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb];	// shift into temp copy
			for (var c=0; c<4; c++) s[r][c] = t[c];			// and copy back
		  }			 // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
		  return s;	 // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf 
		}


		function MixColumns(s, Nb) {   // combine bytes of each col of state S [§5.1.3]
		  for (var c=0; c<4; c++) {
			var a = new Array(4);  // 'a' is a copy of the current column from 's'
			var b = new Array(4);  // 'b' is a•{02} in GF(2^8)
			for (var i=0; i<4; i++) {
			  a[i] = s[i][c];
			  b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1;
			}
			// a[n] ^ b[n] is a•{03} in GF(2^8)
			s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3
			s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3
			s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3
			s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3
		  }
		  return s;
		}


		function AddRoundKey(state, w, rnd, Nb) {  // xor Round Key into state S [§5.1.4]
		  for (var r=0; r<4; r++) {
			for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r];
		  }
		  return state;
		}


		function KeyExpansion(key) {  // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2]
		  var Nb = 4;			 // block size (in words): no of columns in state (fixed at 4 for AES)
		  var Nk = key.length/4	 // key length (in words): 4/6/8 for 128/192/256-bit keys
		  var Nr = Nk + 6;		 // no of rounds: 10/12/14 for 128/192/256-bit keys

		  var w = new Array(Nb*(Nr+1));
		  var temp = new Array(4);

		  for (var i=0; i<Nk; i++) {
			var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]];
			w[i] = r;
		  }

		  for (var i=Nk; i<(Nb*(Nr+1)); i++) {
			w[i] = new Array(4);
			for (var t=0; t<4; t++) temp[t] = w[i-1][t];
			if (i % Nk == 0) {
			  temp = SubWord(RotWord(temp));
			  for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t];
			} else if (Nk > 6 && i%Nk == 4) {
			  temp = SubWord(temp);
			}
			for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t];
		  }

		  return w;
		}

		function SubWord(w) {	 // apply SBox to 4-byte word w
		  for (var i=0; i<4; i++) w[i] = Sbox[w[i]];
		  return w;
		}

		function RotWord(w) {	 // rotate 4-byte word w left by one byte
		  w[4] = w[0];
		  for (var i=0; i<4; i++) w[i] = w[i+1];
		  return w;
		}

		/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

		/* 
		 * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation
		 *							 - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
		 *	 for each block
		 *	 - outputblock = cipher(counter, key)
		 *	 - cipherblock = plaintext xor outputblock
		 */
		function AESEncryptCtr(plaintext, password, nBits) {
		  if (!(nBits==128 || nBits==192 || nBits==256)) return '';	 // standard allows 128/192/256 bit keys
	
		  // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password; 
		  // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1
		  var nBytes = nBits/8;	 // no bytes in key
		  var pwBytes = new Array(nBytes);
		  for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;

		  var key = Cipher(pwBytes, KeyExpansion(pwBytes));

		  key = key.concat(key.slice(0, nBytes-16));  // key is now 16/24/32 bytes long

		  // initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes,
		  // block counter in 2nd 8 bytes
		  var blockSize = 16;  // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
		  var counterBlock = new Array(blockSize);	// block size fixed at 16 bytes / 128 bits (Nb=4) for AES
		  var nonce = (new Date()).getTime();  // milliseconds since 1-Jan-1970

		  // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops
		  for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff;
		  for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff; 

		  // generate key schedule - an expansion of the key into distinct Key Rounds for each round
		  var keySchedule = KeyExpansion(key);

		  var blockCount = Math.ceil(plaintext.length/blockSize);
		  var ciphertext = new Array(blockCount);  // ciphertext as array of strings
  
		  for (var b=0; b<blockCount; b++) {
			// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
			// again done in two stages for 32-bit ops
			for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff;
			for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8)

			var cipherCntr = Cipher(counterBlock, keySchedule);	 // -- encrypt counter block --
	
			// calculate length of final block:
			var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1;

			var ct = '';
			for (var i=0; i<blockLength; i++) {	 // -- xor plaintext with ciphered counter byte-by-byte --
			  var plaintextByte = plaintext.charCodeAt(b*blockSize+i);
			  var cipherByte = plaintextByte ^ cipherCntr[i];
			  ct += String.fromCharCode(cipherByte);
			}
			// ct is now ciphertext for this block

			ciphertext[b] = escCtrlChars(ct);  // escape troublesome characters in ciphertext
		  }

		  // convert the nonce to a string to go on the front of the ciphertext
		  var ctrTxt = '';
		  for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]);
		  ctrTxt = escCtrlChars(ctrTxt);

		  // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency
		  return ctrTxt + '-' + ciphertext.join('-');
		}


		/* 
		 * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation
		 *
		 *	 for each block
		 *	 - outputblock = cipher(counter, key)
		 *	 - cipherblock = plaintext xor outputblock
		 */
		function AESDecryptCtr(ciphertext, password, nBits) {
		  if (!(nBits==128 || nBits==192 || nBits==256)) return '';	 // standard allows 128/192/256 bit keys

		  var nBytes = nBits/8;	 // no bytes in key
		  var pwBytes = new Array(nBytes);
		  for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;
		  var pwKeySchedule = KeyExpansion(pwBytes);
		  var key = Cipher(pwBytes, pwKeySchedule);
		  key = key.concat(key.slice(0, nBytes-16));  // key is now 16/24/32 bytes long

		  var keySchedule = KeyExpansion(key);

		  ciphertext = ciphertext.split('-');  // split ciphertext into array of block-length strings 

		  // recover nonce from 1st element of ciphertext
		  var blockSize = 16;  // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
		  var counterBlock = new Array(blockSize);
		  var ctrTxt = unescCtrlChars(ciphertext[0]);
		  for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i);

		  var plaintext = new Array(ciphertext.length-1);

		  for (var b=1; b<ciphertext.length; b++) {
			// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
			for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff;
			for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff;

			var cipherCntr = Cipher(counterBlock, keySchedule);	 // encrypt counter block

			ciphertext[b] = unescCtrlChars(ciphertext[b]);

			var pt = '';
			for (var i=0; i<ciphertext[b].length; i++) {
			  // -- xor plaintext with ciphered counter byte-by-byte --
			  var ciphertextByte = ciphertext[b].charCodeAt(i);
			  var plaintextByte = ciphertextByte ^ cipherCntr[i];
			  pt += String.fromCharCode(plaintextByte);
			}
			// pt is now plaintext for this block

			plaintext[b-1] = pt;  // b-1 'cos no initial nonce block in plaintext
		  }

		  return plaintext.join('');
		}

		/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

		function escCtrlChars(str) {  // escape control chars which might cause problems handling ciphertext
		  return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; });
		}  // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker

		function unescCtrlChars(str) {	// unescape potentially problematic control characters
		  return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); });
		}

		/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
		
		function encrypt(plaintext, password){
			return AESEncryptCtr(plaintext, password, 256);
		}

		function decrypt(ciphertext, password){	
			return AESDecryptCtr(ciphertext, password, 256);
		}
		
		/* End AES Implementation */
		
		var cmd = msg.substr(0,4);
		var arg = msg.substr(5);
		if(cmd == "encr"){
			arg = eval("(" + arg + ")");
			var plaintext = arg.plaintext;
			var password = arg.password;
			var results = encrypt(plaintext, password);
			gearsWorkerPool.sendMessage(String(results), sender);
		}else if(cmd == "decr"){
			arg = eval("(" + arg + ")");
			var ciphertext = arg.ciphertext;
			var password = arg.password;
			var results = decrypt(ciphertext, password);
			gearsWorkerPool.sendMessage(String(results), sender);
		}
	}
});

}