From 1c5685d68f1b73270fb814fe04cbb490eb90ba5f Mon Sep 17 00:00:00 2001 From: mensonge Date: Fri, 14 Nov 2008 15:39:19 +0000 Subject: Minor fix: Remove DOJO library (60Mo) replaced by link to Google CDN (online DOJO library) git-svn-id: https://semanticscuttle.svn.sourceforge.net/svnroot/semanticscuttle/trunk@159 b3834d28-1941-0410-a4f8-b48e95affb8f --- includes/js/dojox/gfx/decompose.js | 139 ------------------------------------- 1 file changed, 139 deletions(-) delete mode 100644 includes/js/dojox/gfx/decompose.js (limited to 'includes/js/dojox/gfx/decompose.js') diff --git a/includes/js/dojox/gfx/decompose.js b/includes/js/dojox/gfx/decompose.js deleted file mode 100644 index 4e34ee6..0000000 --- a/includes/js/dojox/gfx/decompose.js +++ /dev/null @@ -1,139 +0,0 @@ -if(!dojo._hasResource["dojox.gfx.decompose"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code. -dojo._hasResource["dojox.gfx.decompose"] = true; -dojo.provide("dojox.gfx.decompose"); - -dojo.require("dojox.gfx.matrix"); - -(function(){ - var m = dojox.gfx.matrix; - - var eq = function(/* Number */ a, /* Number */ b){ - // summary: compare two FP numbers for equality - return Math.abs(a - b) <= 1e-6 * (Math.abs(a) + Math.abs(b)); // Boolean - }; - - var calcFromValues = function(/* Number */ r1, /* Number */ m1, /* Number */ r2, /* Number */ m2){ - // summary: uses two close FP ration and their original magnitudes to approximate the result - if(!isFinite(r1)){ - return r2; // Number - }else if(!isFinite(r2)){ - return r1; // Number - } - m1 = Math.abs(m1), m2 = Math.abs(m2); - return (m1 * r1 + m2 * r2) / (m1 + m2); // Number - }; - - var transpose = function(/* dojox.gfx.matrix.Matrix2D */ matrix){ - // matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object - var M = new m.Matrix2D(matrix); - return dojo.mixin(M, {dx: 0, dy: 0, xy: M.yx, yx: M.xy}); // dojox.gfx.matrix.Matrix2D - }; - - var scaleSign = function(/* dojox.gfx.matrix.Matrix2D */ matrix){ - return (matrix.xx * matrix.yy < 0 || matrix.xy * matrix.yx > 0) ? -1 : 1; // Number - }; - - var eigenvalueDecomposition = function(/* dojox.gfx.matrix.Matrix2D */ matrix){ - // matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object - var M = m.normalize(matrix), - b = -M.xx - M.yy, - c = M.xx * M.yy - M.xy * M.yx, - d = Math.sqrt(b * b - 4 * c), - l1 = -(b + (b < 0 ? -d : d)) / 2, - l2 = c / l1, - vx1 = M.xy / (l1 - M.xx), vy1 = 1, - vx2 = M.xy / (l2 - M.xx), vy2 = 1; - if(eq(l1, l2)){ - vx1 = 1, vy1 = 0, vx2 = 0, vy2 = 1; - } - if(!isFinite(vx1)){ - vx1 = 1, vy1 = (l1 - M.xx) / M.xy; - if(!isFinite(vy1)){ - vx1 = (l1 - M.yy) / M.yx, vy1 = 1; - if(!isFinite(vx1)){ - vx1 = 1, vy1 = M.yx / (l1 - M.yy); - } - } - } - if(!isFinite(vx2)){ - vx2 = 1, vy2 = (l2 - M.xx) / M.xy; - if(!isFinite(vy2)){ - vx2 = (l2 - M.yy) / M.yx, vy2 = 1; - if(!isFinite(vx2)){ - vx2 = 1, vy2 = M.yx / (l2 - M.yy); - } - } - } - var d1 = Math.sqrt(vx1 * vx1 + vy1 * vy1), - d2 = Math.sqrt(vx2 * vx2 + vy2 * vy2); - if(!isFinite(vx1 /= d1)){ vx1 = 0; } - if(!isFinite(vy1 /= d1)){ vy1 = 0; } - if(!isFinite(vx2 /= d2)){ vx2 = 0; } - if(!isFinite(vy2 /= d2)){ vy2 = 0; } - return { // Object - value1: l1, - value2: l2, - vector1: {x: vx1, y: vy1}, - vector2: {x: vx2, y: vy2} - }; - }; - - var decomposeSR = function(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){ - // summary: decomposes a matrix into [scale, rotate]; no checks are done. - var sign = scaleSign(M), - a = result.angle1 = (Math.atan2(M.yx, M.yy) + Math.atan2(-sign * M.xy, sign * M.xx)) / 2, - cos = Math.cos(a), sin = Math.sin(a); - result.sx = calcFromValues(M.xx / cos, cos, -M.xy / sin, sin); - result.sy = calcFromValues(M.yy / cos, cos, M.yx / sin, sin); - return result; // Object - }; - - var decomposeRS = function(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){ - // summary: decomposes a matrix into [rotate, scale]; no checks are done - var sign = scaleSign(M), - a = result.angle2 = (Math.atan2(sign * M.yx, sign * M.xx) + Math.atan2(-M.xy, M.yy)) / 2, - cos = Math.cos(a), sin = Math.sin(a); - result.sx = calcFromValues(M.xx / cos, cos, M.yx / sin, sin); - result.sy = calcFromValues(M.yy / cos, cos, -M.xy / sin, sin); - return result; // Object - }; - - dojox.gfx.decompose = function(matrix){ - // summary: decompose a 2D matrix into translation, scaling, and rotation components - // description: this function decompose a matrix into four logical components: - // translation, rotation, scaling, and one more rotation using SVD. - // The components should be applied in following order: - // | [translate, rotate(angle2), scale, rotate(angle1)] - // matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object - var M = m.normalize(matrix), - result = {dx: M.dx, dy: M.dy, sx: 1, sy: 1, angle1: 0, angle2: 0}; - // detect case: [scale] - if(eq(M.xy, 0) && eq(M.yx, 0)){ - return dojo.mixin(result, {sx: M.xx, sy: M.yy}); // Object - } - // detect case: [scale, rotate] - if(eq(M.xx * M.yx, -M.xy * M.yy)){ - return decomposeSR(M, result); // Object - } - // detect case: [rotate, scale] - if(eq(M.xx * M.xy, -M.yx * M.yy)){ - return decomposeRS(M, result); // Object - } - // do SVD - var MT = transpose(M), - u = eigenvalueDecomposition([M, MT]), - v = eigenvalueDecomposition([MT, M]), - U = new m.Matrix2D({xx: u.vector1.x, xy: u.vector2.x, yx: u.vector1.y, yy: u.vector2.y}), - VT = new m.Matrix2D({xx: v.vector1.x, xy: v.vector1.y, yx: v.vector2.x, yy: v.vector2.y}), - S = new m.Matrix2D([m.invert(U), M, m.invert(VT)]); - decomposeSR(VT, result); - S.xx *= result.sx; - S.yy *= result.sy; - decomposeRS(U, result); - S.xx *= result.sx; - S.yy *= result.sy; - return dojo.mixin(result, {sx: S.xx, sy: S.yy}); // Object - }; -})(); - -} -- cgit v1.2.3