diff options
author | mensonge <mensonge@b3834d28-1941-0410-a4f8-b48e95affb8f> | 2008-11-14 15:39:19 +0000 |
---|---|---|
committer | mensonge <mensonge@b3834d28-1941-0410-a4f8-b48e95affb8f> | 2008-11-14 15:39:19 +0000 |
commit | 1c5685d68f1b73270fb814fe04cbb490eb90ba5f (patch) | |
tree | 3d3ada08a934b96fc31531f1327690d7edc6f766 /includes/js/dojox/_sql/_crypto.js | |
parent | 104d59099e048688c4dbac37d72137006e396558 (diff) | |
download | semanticscuttle-1c5685d68f1b73270fb814fe04cbb490eb90ba5f.tar.gz semanticscuttle-1c5685d68f1b73270fb814fe04cbb490eb90ba5f.tar.bz2 |
Minor fix: Remove DOJO library (60Mo) replaced by link to Google CDN (online DOJO library)
git-svn-id: https://semanticscuttle.svn.sourceforge.net/svnroot/semanticscuttle/trunk@159 b3834d28-1941-0410-a4f8-b48e95affb8f
Diffstat (limited to 'includes/js/dojox/_sql/_crypto.js')
-rw-r--r-- | includes/js/dojox/_sql/_crypto.js | 443 |
1 files changed, 0 insertions, 443 deletions
diff --git a/includes/js/dojox/_sql/_crypto.js b/includes/js/dojox/_sql/_crypto.js deleted file mode 100644 index e8a9214..0000000 --- a/includes/js/dojox/_sql/_crypto.js +++ /dev/null @@ -1,443 +0,0 @@ -if(!dojo._hasResource["dojox._sql._crypto"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code. -dojo._hasResource["dojox._sql._crypto"] = true; -// Taken from http://www.movable-type.co.uk/scripts/aes.html by -// Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool -// by Brad Neuberg, bkn3@columbia.edu - -dojo.provide("dojox._sql._crypto"); - -dojo.mixin(dojox._sql._crypto,{ - // _POOL_SIZE: - // Size of worker pool to create to help with crypto - _POOL_SIZE: 100, - - encrypt: function(plaintext, password, callback){ - // summary: - // Use Corrected Block TEA to encrypt plaintext using password - // (note plaintext & password must be strings not string objects). - // Results will be returned to the 'callback' asychronously. - this._initWorkerPool(); - - var msg ={plaintext: plaintext, password: password}; - msg = dojo.toJson(msg); - msg = "encr:" + String(msg); - - this._assignWork(msg, callback); - }, - - decrypt: function(ciphertext, password, callback){ - // summary: - // Use Corrected Block TEA to decrypt ciphertext using password - // (note ciphertext & password must be strings not string objects). - // Results will be returned to the 'callback' asychronously. - this._initWorkerPool(); - - var msg ={ciphertext: ciphertext, password: password}; - msg = dojo.toJson(msg); - msg = "decr:" + String(msg); - - this._assignWork(msg, callback); - }, - - _initWorkerPool: function(){ - // bugs in Google Gears prevents us from dynamically creating - // and destroying workers as we need them -- the worker - // pool functionality stops working after a number of crypto - // cycles (probably related to a memory leak in Google Gears). - // this is too bad, since it results in much simpler code. - - // instead, we have to create a pool of workers and reuse them. we - // keep a stack of 'unemployed' Worker IDs that are currently not working. - // if a work request comes in, we pop off the 'unemployed' stack - // and put them to work, storing them in an 'employed' hashtable, - // keyed by their Worker ID with the value being the callback function - // that wants the result. when an employed worker is done, we get - // a message in our 'manager' which adds this worker back to the - // unemployed stack and routes the result to the callback that - // wanted it. if all the workers were employed in the past but - // more work needed to be done (i.e. it's a tight labor pool ;) - // then the work messages are pushed onto - // a 'handleMessage' queue as an object tuple{msg: msg, callback: callback} - - if(!this._manager){ - try{ - this._manager = google.gears.factory.create("beta.workerpool", "1.0"); - this._unemployed = []; - this._employed ={}; - this._handleMessage = []; - - var self = this; - this._manager.onmessage = function(msg, sender){ - // get the callback necessary to serve this result - var callback = self._employed["_" + sender]; - - // make this worker unemployed - self._employed["_" + sender] = undefined; - self._unemployed.push("_" + sender); - - // see if we need to assign new work - // that was queued up needing to be done - if(self._handleMessage.length){ - var handleMe = self._handleMessage.shift(); - self._assignWork(handleMe.msg, handleMe.callback); - } - - // return results - callback(msg); - } - - var workerInit = "function _workerInit(){" - + "gearsWorkerPool.onmessage = " - + String(this._workerHandler) - + ";" - + "}"; - - var code = workerInit + " _workerInit();"; - - // create our worker pool - for(var i = 0; i < this._POOL_SIZE; i++){ - this._unemployed.push("_" + this._manager.createWorker(code)); - } - }catch(exp){ - throw exp.message||exp; - } - } - }, - - _assignWork: function(msg, callback){ - // can we immediately assign this work? - if(!this._handleMessage.length && this._unemployed.length){ - // get an unemployed worker - var workerID = this._unemployed.shift().substring(1); // remove _ - - // list this worker as employed - this._employed["_" + workerID] = callback; - - // do the worke - this._manager.sendMessage(msg, workerID); - }else{ - // we have to queue it up - this._handleMessage ={msg: msg, callback: callback}; - } - }, - - _workerHandler: function(msg, sender){ - - /* Begin AES Implementation */ - - /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ - - // Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1] - var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, - 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, - 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, - 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, - 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, - 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, - 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, - 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, - 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, - 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, - 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, - 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, - 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, - 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, - 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, - 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16]; - - // Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] - var Rcon = [ [0x00, 0x00, 0x00, 0x00], - [0x01, 0x00, 0x00, 0x00], - [0x02, 0x00, 0x00, 0x00], - [0x04, 0x00, 0x00, 0x00], - [0x08, 0x00, 0x00, 0x00], - [0x10, 0x00, 0x00, 0x00], - [0x20, 0x00, 0x00, 0x00], - [0x40, 0x00, 0x00, 0x00], - [0x80, 0x00, 0x00, 0x00], - [0x1b, 0x00, 0x00, 0x00], - [0x36, 0x00, 0x00, 0x00] ]; - - /* - * AES Cipher function: encrypt 'input' with Rijndael algorithm - * - * takes byte-array 'input' (16 bytes) - * 2D byte-array key schedule 'w' (Nr+1 x Nb bytes) - * - * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage - * - * returns byte-array encrypted value (16 bytes) - */ - function Cipher(input, w) { // main Cipher function [§5.1] - var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) - var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys - - var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4] - for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; - - state = AddRoundKey(state, w, 0, Nb); - - for (var round=1; round<Nr; round++) { - state = SubBytes(state, Nb); - state = ShiftRows(state, Nb); - state = MixColumns(state, Nb); - state = AddRoundKey(state, w, round, Nb); - } - - state = SubBytes(state, Nb); - state = ShiftRows(state, Nb); - state = AddRoundKey(state, w, Nr, Nb); - - var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4] - for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; - return output; - } - - - function SubBytes(s, Nb) { // apply SBox to state S [§5.1.1] - for (var r=0; r<4; r++) { - for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]]; - } - return s; - } - - - function ShiftRows(s, Nb) { // shift row r of state S left by r bytes [§5.1.2] - var t = new Array(4); - for (var r=1; r<4; r++) { - for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy - for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back - } // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): - return s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf - } - - - function MixColumns(s, Nb) { // combine bytes of each col of state S [§5.1.3] - for (var c=0; c<4; c++) { - var a = new Array(4); // 'a' is a copy of the current column from 's' - var b = new Array(4); // 'b' is a•{02} in GF(2^8) - for (var i=0; i<4; i++) { - a[i] = s[i][c]; - b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; - } - // a[n] ^ b[n] is a•{03} in GF(2^8) - s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3 - s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3 - s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3 - s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3 - } - return s; - } - - - function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4] - for (var r=0; r<4; r++) { - for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; - } - return state; - } - - - function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2] - var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) - var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys - var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys - - var w = new Array(Nb*(Nr+1)); - var temp = new Array(4); - - for (var i=0; i<Nk; i++) { - var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]; - w[i] = r; - } - - for (var i=Nk; i<(Nb*(Nr+1)); i++) { - w[i] = new Array(4); - for (var t=0; t<4; t++) temp[t] = w[i-1][t]; - if (i % Nk == 0) { - temp = SubWord(RotWord(temp)); - for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t]; - } else if (Nk > 6 && i%Nk == 4) { - temp = SubWord(temp); - } - for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; - } - - return w; - } - - function SubWord(w) { // apply SBox to 4-byte word w - for (var i=0; i<4; i++) w[i] = Sbox[w[i]]; - return w; - } - - function RotWord(w) { // rotate 4-byte word w left by one byte - w[4] = w[0]; - for (var i=0; i<4; i++) w[i] = w[i+1]; - return w; - } - - /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ - - /* - * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation - * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf - * for each block - * - outputblock = cipher(counter, key) - * - cipherblock = plaintext xor outputblock - */ - function AESEncryptCtr(plaintext, password, nBits) { - if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys - - // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password; - // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1 - var nBytes = nBits/8; // no bytes in key - var pwBytes = new Array(nBytes); - for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; - - var key = Cipher(pwBytes, KeyExpansion(pwBytes)); - - key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long - - // initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes, - // block counter in 2nd 8 bytes - var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES - var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES - var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970 - - // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops - for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff; - for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff; - - // generate key schedule - an expansion of the key into distinct Key Rounds for each round - var keySchedule = KeyExpansion(key); - - var blockCount = Math.ceil(plaintext.length/blockSize); - var ciphertext = new Array(blockCount); // ciphertext as array of strings - - for (var b=0; b<blockCount; b++) { - // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) - // again done in two stages for 32-bit ops - for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff; - for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8) - - var cipherCntr = Cipher(counterBlock, keySchedule); // -- encrypt counter block -- - - // calculate length of final block: - var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1; - - var ct = ''; - for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter byte-by-byte -- - var plaintextByte = plaintext.charCodeAt(b*blockSize+i); - var cipherByte = plaintextByte ^ cipherCntr[i]; - ct += String.fromCharCode(cipherByte); - } - // ct is now ciphertext for this block - - ciphertext[b] = escCtrlChars(ct); // escape troublesome characters in ciphertext - } - - // convert the nonce to a string to go on the front of the ciphertext - var ctrTxt = ''; - for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); - ctrTxt = escCtrlChars(ctrTxt); - - // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency - return ctrTxt + '-' + ciphertext.join('-'); - } - - - /* - * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation - * - * for each block - * - outputblock = cipher(counter, key) - * - cipherblock = plaintext xor outputblock - */ - function AESDecryptCtr(ciphertext, password, nBits) { - if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys - - var nBytes = nBits/8; // no bytes in key - var pwBytes = new Array(nBytes); - for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; - var pwKeySchedule = KeyExpansion(pwBytes); - var key = Cipher(pwBytes, pwKeySchedule); - key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long - - var keySchedule = KeyExpansion(key); - - ciphertext = ciphertext.split('-'); // split ciphertext into array of block-length strings - - // recover nonce from 1st element of ciphertext - var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES - var counterBlock = new Array(blockSize); - var ctrTxt = unescCtrlChars(ciphertext[0]); - for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i); - - var plaintext = new Array(ciphertext.length-1); - - for (var b=1; b<ciphertext.length; b++) { - // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) - for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff; - for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff; - - var cipherCntr = Cipher(counterBlock, keySchedule); // encrypt counter block - - ciphertext[b] = unescCtrlChars(ciphertext[b]); - - var pt = ''; - for (var i=0; i<ciphertext[b].length; i++) { - // -- xor plaintext with ciphered counter byte-by-byte -- - var ciphertextByte = ciphertext[b].charCodeAt(i); - var plaintextByte = ciphertextByte ^ cipherCntr[i]; - pt += String.fromCharCode(plaintextByte); - } - // pt is now plaintext for this block - - plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext - } - - return plaintext.join(''); - } - - /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ - - function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext - return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; }); - } // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker - - function unescCtrlChars(str) { // unescape potentially problematic control characters - return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); }); - } - - /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ - - function encrypt(plaintext, password){ - return AESEncryptCtr(plaintext, password, 256); - } - - function decrypt(ciphertext, password){ - return AESDecryptCtr(ciphertext, password, 256); - } - - /* End AES Implementation */ - - var cmd = msg.substr(0,4); - var arg = msg.substr(5); - if(cmd == "encr"){ - arg = eval("(" + arg + ")"); - var plaintext = arg.plaintext; - var password = arg.password; - var results = encrypt(plaintext, password); - gearsWorkerPool.sendMessage(String(results), sender); - }else if(cmd == "decr"){ - arg = eval("(" + arg + ")"); - var ciphertext = arg.ciphertext; - var password = arg.password; - var results = decrypt(ciphertext, password); - gearsWorkerPool.sendMessage(String(results), sender); - } - } -}); - -} |