aboutsummaryrefslogtreecommitdiff
path: root/ai.bib
diff options
context:
space:
mode:
authorSilvio Rhatto <rhatto@riseup.net>2024-06-21 10:00:11 -0300
committerSilvio Rhatto <rhatto@riseup.net>2024-06-21 10:00:11 -0300
commit50f14df6dbffdf20a318942bf494d82e5430fb1a (patch)
treeaed000b7dc525ee724b95ba049f2d701999069d5 /ai.bib
parent18958372fc37344f1c23962637cc5b589e6aa557 (diff)
downloadbiblio-50f14df6dbffdf20a318942bf494d82e5430fb1a.tar.gz
biblio-50f14df6dbffdf20a318942bf494d82e5430fb1a.tar.bz2
Adds @thompson2021 and @thompson2022
Diffstat (limited to 'ai.bib')
-rw-r--r--ai.bib19
1 files changed, 19 insertions, 0 deletions
diff --git a/ai.bib b/ai.bib
index a6e17ef..008a264 100644
--- a/ai.bib
+++ b/ai.bib
@@ -32,6 +32,7 @@
url = {https://www.academia.edu/15275569/The_Evolution_of_Machinic_Intelligence_map_},
}
+% https://baixacultura.org/2024/02/28/o-olho-do-mestre-a-automacao-da-inteligencia-geral/
@book{pasquinelli2023,
title = "The Eye of the Master: A Social History of Artificial Intelligence",
author = "Pasquinelli, Matteo",
@@ -139,3 +140,21 @@
volume = "",
url = "",
}
+
+@article{thompson2021,
+ title = {Deep Learning’s Diminishing Returns: The cost of improvement is becoming unsustainable},
+ author = {Neil C. Thompson and Kristjan Greenewald and Keeheon Lee and Gabriel F. Manso},
+ year = {2021},
+ month = {9},
+ url = {https://spectrum.ieee.org/deep-learning-computational-cost},
+}
+
+@article{thompson2022,
+ title = {The Computational Limits of Deep Learning},
+ author = {Neil C. Thompson and Kristjan Greenewald and Keeheon Lee and Gabriel F. Manso},
+ year = {2022},
+ eprint = {2007.05558},
+ archivePrefix = {arXiv},
+ primaryClass = {id = 'cs.LG' full_name = 'Machine Learning' is_active = True alt_name = None in_archive = 'cs' is_general = False description = 'Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.'},
+ url = {https://arxiv.org/abs/2007.05558},
+}